Monatshefte für Chemie 107, 1423-1427 (1976) 9 by Springer-Verlag 1976

Polarographic Behaviour of n-Butyl Thioglycolate

By

R. S. Saxena and M. C. Saxena

Department of Chemistry, Malaviya Regional Engineering College, Jaipur, India

With 1 Figure

(Received February 19, 1976)

The polarographic behaviour of n-butyl thioglycolate, [HSCH₂OOC(C₄H₉)] has been studied in 25% ethanol, 0.1M- $KNO₃$ and 0.002% Triton X-100 in the pH range 1.96-11.84 at the d.m.e. The polarograms consist of two waves, a pre-wave of constant height followed by a normal anodic wave. The electrode reaction is reversible and diffusion controlled involving one electron transfer process. The maximum number of moles adsorbed per unit area is 1.30×10^{-9} mole/cm², i.e. 7.82×10^{14} molecules/cm², which corresponds to an area 12.84 Å per adsorbed molecule. The adsorption coefficient and molar adsorption energy have been calculated to be 43.4×10^4 and 142.8 kcal/mole respectively. The dissociation constant (pK) of the sulphydryl group is found to be 9.4.

Introduction

On account of the increased significance of the sulphur containing organic compounds in pharmaceutical and industrial fields, considerable interest regarding their electrochemical behaviour has been shown in. the past two decades. Thus the polarography of ethane-1,2-dithiol¹, diisopropylaminoethane-thiol--hydrochloride², glycoldimercaptoacetate³ and mercaptofuran⁴ etc., has been studied in these laboratories by *Saxena* et al. The present communication reports the polarographic behaviour of n-butyl thioglycolate in different buffers, viz. *Britton Robinson, Clark* and *Lub's, Michaelis-borate,* acetate and NH_3 —NH₄Cl; and supporting electrolytes, viz. NaCl, KNO₃, KCl, $KClO₄, NaClO₄, Li₂SO₄$ for which there is no reference in the literature.

Experimental

n-Butyl thioglycolate (referred to herein as RSH) was obtained from Evan's Chemeties Inc., New York, and all other chemicals were A.R. (B.D.H.) quality. A manual polarograph, with sealamp galvanometer and

a SCE as reference electrode, was used for recording the polarograms. The capillary had the following characteristics in 25% ethanol, $0.1M$ -KNO₃ and 0.002% Triton X-100 at $-$ 0.30 V vs. SCE with h_{Hg} value being 50 cm, $m = 4.126$ mg/sec., $t = 2.23$ seconds; $m^2/s t^2 l_6 = 2.940$ mg²/s sec⁻¹/₂. Polarograms were recorded in an inert atmosphere of nitrogen at $28 + 0.1$ °C.

Results and Discussions

E//ect o/pH

The polarograms for RSH (1.0 m) in 25% ethanol containing 0.1M-KNO₃ and 0.002% Triton X-100 at different pH values using *Clark* and *Lub's* buffers showed an anodic wave followed by a prewave at all pH values.

The plots of Log $(i_d - i)/i$ vs. $-E_{d,e}$ were linear with a slope 0.05210 indicating the reversible electrode reactioa involving one electron transfer process. With increase in pH, the E_{ν_e} of the anodic wave as well as of the prewave shifted towards more negative potential, according to the following equation 5

$$
{E}_{\gamma_2}=\text{Const.}-\frac{2\cdot 3\mathrel{RT}}{n\mathrel{F}}\text{pH}
$$

The point of intersection of two linear portions of the plots of E_{ν_a} vs. pH corresponds to the dissociation constant of the sulphydryl group 6 (pK) and is found to be 9.4.

Several polarograms of RSH were drawn in the pH range $(5-11)$ using different buffers viz. *Britton-Robinson, Clark* and *Lub's, Michaelis.borate,* NH_3 - NH_4Cl and acetate buffer, but the nature of the wave remained unaffected by the constituents of the buffers.

Effect of ethanol concentration. It was observed that the diffusion current decreased with the increase in ethanol concentration up to 40% beyond which it showed an increase, the nature of the wave, however, remained unchanged. This may be due to the change in diffusion coefficient D which depends on the viscosity of the solution 7.

Effect of RSH Conc., Drop Time and Temperature (Fig. 1, Table 1)

The height of the prewave (i_p) varies linearly with RSH up to 0.4 mM beyond which it remains almost constant. The value $i_l + i_p = i_d$ is proportional to [RSH] and the mean value of diffusion current constant (I) and diffusion coefficient (D_{ν}) are found to be 5.98 μ A/mM and $2.06 \mu\text{A/m}M \text{ mg}^{2}/\text{sec}^{-1}/\text{resp}.$

For 1.0 mM-RSH, i_d is found to be proportional to h_{eff} while i_p varied linearly with h_{eff} . The values of i_d/h_{eff} ^{1/2} are given in Table 1. The temperature coefficient for i_d is 0.8035% per degree. These observations substantiate the diffusion controlled nature of the wave.

Fig. 1. Curve 1. Plot of i_d vs. $h_{\text{eff}}^{V_2}$; Curve 2. Plot of i_d vs. RSH concentration; Curve 3. Plot of i_d vs. Temp.

Table 1. *Effect of Varying* [RSH], *Temperature and* Hg *Pressure on the Polarography o] n-Butyl-Thioglyeolate*

RSH mM/l	i_a/c	Ι	$h_{\rm Hg}$ cm	h_{eff} $_{\rm cm}$	i_d μA	$i_d/h_{\rm eff}^{\frac{1}{2}}$	Temp., $^{\circ}C$	i_d	i_d (30 °C)	i_d (ambient)/ Temp.coeff. $\%$ per degree
0.2	8.5	2.892	25	23.43	3.6	0.7439	30	5.19	1.00	
0.4	6.0	2.212	30	28.43	3.8	0.7131	35	5.40	1.04	0.7921
0.6	6.16	2.098	35	33.43	4.1	0.7094	40	5.60	1.07	0.760
0.8	6.12	2.084	40	38.43	4.3	0.6947	45	5.90	1.137	0.850
1.0	6.00	2.042	45	43.43	4.75	0.7197	50	6.10	1.175	0.8072
1.2	5.83	1.985	50	48.43	4.95	0.725				
1.4	5.92	2.0180	55	53.43	5.25	0.7360				

 $h_{\text{soln}} = 1.2 \text{ cm}$; back pressure $= 3.1/(mt)\% = 1.480 \text{ cm}$ of Hg

Effect of Supporting Electrolytes

 i_{d} for 1.0 mM-RSH in 25% ethanol and 0.002% triton X-100 was measured at pH4.28 using different supporting electrolytes of the concentration $0.1M$. A well defined reversible anodic wave associated with a prewave was observed in each case. The diffusion current constant (I) was found to increase in the following order.

$$
KNO_3 > KCI > KCIO_4 > NaClO_4 > NaCl > Li_2SO_4.
$$

The values of I and — E_{ν_s} have been summarised in Table 2.

Supporting electrolyte		$- E_{\frac{1}{2}}$	Supporting electrolyte		$E_{\frac{1}{2}}$
$\rm{KNO_3}$	1.40	0.245	NaClO ₄	1.279	0.240
KCI	1.347	0.250	NaCl	1.06	0.246
$\rm KClO_4$	1.313	0.251	Li_2SO_4	0.976	0.250

Table 2. *E/Jeet o/Supporting Electrolytes*

Controlled-Potential Electrolysis

A solution of RSH (1.00 mM) containing $0.1M$ -KNO₃ and 0.002% Triton X-100 in 25% ethanol at pH 4.28 was electrolysed in an inert atmosphere for 5 hours at potential -0.10 V (corresponding to the limiting current). A portion of eleetrolysed solution was polarographed under identical conditions when it exhibited an anodie wave with decreased wave height. Absence of a composite wave indicates that the electrode reaction product is an insoluble compound of mercury. The E_{ν_e} of the main wave before electrolysis did not change after electrolysis for 2 hours, thereby indicating reversible nature of the wave 8.

Adsorption Prewave

A steep depression in E vs. t curves was obtained for $1.0 \text{ m}M$ -RSH containing $0.1M$ -KNO₃ at pH 4.28 in the potential range where the prewave appeared, showing a strong adsorption of the electrolysis product at the d.m.e. *Brdička* gave the expression for the average limiting current, i_p , of the adsorption wave⁵

$$
i_p = 0.85 \; nFZm^{2/3} \; t^{-1/3} \tag{1}
$$

where i_p is expressed in amperes, Z is the maximum number of moles adsorbed per cm², m is the rate of mercury flow in mg/sec⁻¹, t is the drop time in seconds, and n and F have their usual notations. From eq. (1) the value of Z was calculated to be 1.30×10^{-9} or 7.82×10^{14} molecules/ $cm²$ which corresponds to an area 12.84 Å per adsorbed molecule.

Adsorption coefficient (ω) and molar adsorption energy (ϕ) were 43.4×10^4 and 142.8 kcal/mole resp. as evaluated from eqs. (2) and (3).

$$
\omega = \frac{2}{C_a} \exp \frac{n \Delta E F}{RT}
$$
 (2)

$$
\phi = n \Delta E F + RT \ln \frac{2}{C_a V} \tag{3}
$$

where ΔE stands for the difference in E_{ν_i} of the prewave and main wave at the concentration C_a at which adsorption and diffusion currents are equal and V is the molar volume of the particles.

References

- *1 R. S. Saxena* and *S. K. Bhatia,* Indian J. Chem. 12, 528 (1974).
- *.2 R. S. Saxena* and *U. S. Chaturvedi,* Elect. China. Acta 18, 327 (1973).
- *a R. S. Saxena* and *S. K. Bhatia,* Bull. Chem. Soc. Japan 47, 2580 (1974).
- *R. S. Saxena* and *S. S. Sheelwant,* Indian J. Chem. 11, 43 (t973).
- *5 j. Heyrovslcy* and *J. Kuta,* Principles of Polarography, Academic Press, N. Y. (1966).
- *6 M. Brezina* and *P. Zuman,* Polarography in Medicine, Biochemistry and Pharmacy, p. 472. New York: Interscience. 1958.
- *7 L. Meites,* Polarographic Techniques, p. 141. New York: Interscience. 1965.
- *8 D. R. Crow,* Polarography of metal complexes, p. 34. London: Academic Press. 1969.

Correspondence and reprints: *Pro]. Dr. R. S. Saxena Department o] Chemistry ;Vlalaviya Regional Engineering College IND-302004 Jaipur India*